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ABSTRACT

As the sophistication of acoustic sensor and communication systems related to

unmanned underwater vehicles (UUV) has increased, the requirement for greater volume

and higher speed data transfers has emerged. Fiber optic technology provides an

effective means for high bandwidth communications with a UUV while minimizing

weight and space criteria aboard the UUV. Increase in data transmission speed has

permitted real time processing of data on the launch platform when using large high

powered computing systems. Maximum system reliability at advanced performance

levels can also be realized. By designing and developing a full scale system comprised

of the UUV, remote control and command platform, and data handling and routing

electronics, fiber optic tethered UUV technology was demonstrated in lab and field tests.

This three year venture culminated in a series of successful in-water tests that proved the

feasibility of fiber optic tethered UUVs and warranted the continuation of research on

remotely operated UUVs.
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CHAPTER 1

INTRODUCTION

With the use of a single fiber as the communication link between the UUV and

launch platform, the success of the overall system relies partially on accurately

converting all communicated information into a serial data stream. The data stream

will then be transmitted optically over the fiber. The task of converting the serial

data stream into data that is useable by the subsystem electronics is accomplished by

additional custom electronics that can multiplex/demultiplex and interface effectively

to the processing and control equipment.

This thesis will discuss the development of a system that utilizes an optical

medium for data communications, and more specifically the design development and

integration of the data handling electronics on either side of the optical subsystem.

1.1 Fiber Optic Tethered Vehicles

A tethered UUV is an underwater vehicle capable of performing various

missions without having in-water perconnel [1]. Tethered UUVs can operate in

hazardous conditions or in bad weather. They can operate in areas that are

dangerous, confined, or otherwise not suited for manned vehicles. Because it is

unmanned, the UUV is fearless and does not have to provide support for man or

extensive equipment [2].



Tethered UUVs are used for operations as search and recovery, underwater

constructio,, assembly, and inspection. 'hey are best suited for large seafloor area

coverage, single task missions, and are clearly superior for hazardous circumstances.

1.2 Fiber as a Data Transmission Medium

The goal of the fiber optic tether is to provide a simple error free link that will

interface different equipment and tolerate the varying communication losses in the

system [3]. The link is the lifeline, communicating real time data and control to and

from the UUV. The communication link must be able to handle high speed data and

large volumes of data [4]. Additionally, its supporting electronic interfaces must be

able to maintain the link through proper use and respect for the maximum link

bandwidth.

Fiber is an unequaled communication link. For an individual single mode

fiber, an unlimited bandwidth-length product is theoretically possible, but not

practical. Viable transmission distance is affected by two parameters, dispersion and

attenuation [5]. Current links operate at less than 5 GHz. As a transmission media,

links can be realized that communicate greater than 250 km without repeaters [6].

Additionally, optical transmitters of different wavelengths can use the same fiber

simultaneously without interference. Being able to use the same fiber simultaneously

multiplies the carrying capacity by the number of wavelengths used.

The optical link offers the great advantage of very high speed and

simultaneous bidirectional data communications. Fiber has the additional advantages
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of a) electrical isolation, b) no short circuits, c) wide bandwidth with low attenuation,

d) transmission security, e) no crosstalk, and f) no fire hazards [5]. Fiber is also

small in size and light weight. A typical fiber for deployment could be less than I mm

in diameter and weigh 1 kg/km, while a coaxial cable with a comparable bandwidth

could be 30 mm in diameter and weigh 1110 kg/km [6]. For UUVs, a fiber link's

size and weight translates to extended mission lifetime and enhanced packing density

for the spooled fiber.

1.3 Data Handling

In order to accommodate the data flow across the optical link, typically,

custom electronics are designed. The design is custom because the type and quantity

of interfaces can vary greatly and the interface to the optics is user specified.

Interfacing systems can exist in different forms; two common structures are

the pipeline and bus structure. In a pipeline configuration, data will pass through

each function (or interface) one at a time to arrive at the final destination (optical

interface). The throughput of the system is limited by the slowest interface. In a bus

configuration, all of the functions are tied to a common point, a bus type structure.

A bus is a communications backplane that is shared for intercommunications among

bus modules. Limitations on the configuration are dependent on the bus bandwidth

and availability, since all data transfers to an alternate interface must pass through the

common bus. The bus can only support one data transfer path at any given instant.
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The choice of the system utilized in this thesis was obviously directed at a

central bus configuration because of the non-pipelining organization of the system

processing. For reasons to be discussed in detail later, the VME (Versa Module

Eurocard) bus was chosen. All interfacing within the two unique subsystems (UUV

and launch platform) is accomplished using the VME bus structure complete with

commercial and custom designed circuit cards.

The objective of the data handler is to provide a transparent interface that joins

the two separate subsystems. If it was possible to keep all of necessary electronics

inside of the UUV, the data flow for the system would be very different. Recorded

data could be routed to the recorders, acoustic data could be channeled directly

through the array processors, and command and control information would be local to

the UUV and provide immediate decisions on processed data. This was not the

situation developing for this system; data would not only exist in the UUV but also at

a remote location that also required the data. The design of this system was not

simply a demonstration of a tethered vehicle, but needed to provide the computational

power required for the experiment.

A powerful processing system had to be transferred to the launch platform

where there were no restrictions on space. Effectively this required the splitting of

the system electronics and the addition of a communication link between them that

would not effect the overall system characteristics or operation. This required

additional electronics evolved into the development of the Fiber Optic-VME Interface

board (FO-VME I/F) and the associated optics.
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1.4 Thesis Objectives

The research presented in this thesis is part of a much larger system that was

involved with the complete system development of a fiber optic tethered UUV. This

system's successful completion took several years and involved the hard work of

many engineering disciplines. This thesis will discuss one specific development

within the system, the engineering of the electronic data handler (FO-VME I/F) on

either side of the optics.

Objectives

"* Evaluate, through field testing, the reliability and performance of operating

a fiber optic tethered UUV communication link. Determine what

performance can be expected and how it can be improved.

"* Evaluate the use of fiber optics as a medium for a simultaneous

bidirectional data link connecting the UUV to the launch platform.

"* Provide real time access to data on either side of the optical link via custom

electronics that can interface easily to commercial equipment.

"* Provide a semi-transparent split of the system data processing electronics

(UUV and launch platform) via a bidirectional data path to the optics.

"* Ensure the custom electronics provides data availability and integrity.
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All the objectives listed above were achieved and will be discussed in this

thesis. Completion of the objectives support the reliability and existence of a fiber

optic tethered UUV, and justify the further development of this technology.

Additionally, this communication system allows real time data to be processed

remotely from the vehicle. The processing also permits a more robust system for the

remote equipment to accomplish complex tasks.

1.5 Thesis Summary

Chapter 2's discussion of technological and space constraints will illustrate

why a fiber optic tethered UUV was needed, and will reinforce the advantage of such

an approach. A look at the optics and payout fiber is included since this represents

the basis for the remote processing. The thesis will discuss the background of a

tethered UUV system and the major components that comprise the system and relate

to data handling and routing.

In Chapter 3, the design and configuration of the data handler that is called the

Fiber-Optic VME Interface (FO-VME I/F) is covered. Its design and development is

discussed. Chapter 4 focuses on the testing process. Through laboratory and field

test results, the entire system, and specifically the FO-VME I/F and fiber optic link,

were tested thoroughly to ensure reliable operation. Important test configurations are

discussed and some unique data analysis is provided.

Chapter 5 discusses the newer technology and how it can be integrated into

the system to create a more dynamic system. The system did have a few operational
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errors. These are listed in Chapter 6 in order to indicate the source of each problem

and the strategies that can or could be used to correct the problems.



8

CHAPTER 2

BACKGROUND & SYSTEM OVERVIEW

Many of today's research and development programs rely on the ."bility of

a standard UUV test bed for testing. This shell of a test bed system is expanded and

modified to accommodate the recorders, electronics, batteries and miscellaneous test

equipment that will aid in the program's objectives. Modification and expansion is

not needed in the fiber optic tethered vehicle, thus reducing UUV space and weight,

and restrictions on computing hardware.

The advantages offered by the fiber optic tethered UUV are slightly diminished

by the custom electronics required to support the link. When the link is used, the

UUV must house the optical transmitter and receiver to drive the fiber, but it must

also contain the electronics that interface with the acoustic array for data and control,

plus to the UUV electronics for controlling UUV movement in the water. Topside,

the electronics must interface to the processing and recording equipment. Typically

these use industry standard interfaces.

2.1 Necessity of a Fiber Optic Tethered UUV

There are two major reasons why tethering of a UUV makes sense and can be

beneficial. They are based on the premise that the tether allows the system

processing electronics to be relocated from the UUV to the launch platform. This
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relocation creates a space savings internal to the UUV without the need for

specialized electronics, and permits the use of virtually any size electronics equipment

on the dry side of the tether.

The amount of electronic equipment that can go on-board a UUV is limited by

available space and the maximum weight allowable for deployment of the UUV. The

constraint on space is made worse by the fact that a UUV is typically small, making

custom fit hardware the rule. The addition of the fiber optic link partially removes

this constraint. Most of the added electronics can be removed and placed on the

launch platform, leaving room for a fiber spool and the associated optics and

electronics. Also, the additional space eliminates the necessity of form-fitting

hardware in the UUV and the launch craft provides relatively boundless space for

housing processing electronics. In addition, there is a cost saving because the need

for special, rugged, or modified equipment is reduced. Standard commercial products

can be utilized effectively.

Besides the savings in space within the UUV, the data processing electronics

on the launch platform can now be larger and more complex due to the removal of

the size constraint. As data processing computers evolve, more power is put into

much more compact a space; however, the high end processing computers, of any

generation, have always been large. The relocation of the processing computers from

the UUV to the launch craft makes it possible to use the best possible processor

(within budget) to meet the objectives of the project. For example, the initial remote

processing system presented in this thesis utilized a 14VAX 3800 workstation and a
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full size 15-slot VME chassis for data processing and command and control.

Including the power supplies and fans needed for this equipment, this equals

approximately 12 ft3 of computer equipment. To fit all of this computing power

inside the UUV would add nearly six feet to the UUV's length. At the time this

system was designed there were no alternatives that could easily fit inside the UUV.

The opportunity to place processing electronics on the launch craft permitted the use

of standard, unmodified laboratory equipment for remote processing.

2.2 Tethered UUV Subsystems

Figure 2.1 shows the main subsystem blocks needed to create a tethered UUV

system. There are four unique susbsystems that, when combined, form a system

capable of remotely processing UUV data and controlling UUV actions. The

subsystems are a) fiber optics, b) UUV electronics, c) launch platform processing

electronics and data recording, and d) data handling and routing electronics. The

following sections discuss each subsystem block.

2.2.1 Fiber Optic Link

An objective of a previous fiber optic link study was to prove that a reliable

connection could be maintained between a UUV and a launch platform [7, 8). The

objective was established for long fiber lengths and high UUV speeds. The success

of this study provided a strong impetus for the use of fiber optics used for remote
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control and command processing, and for continued research into optically tethered

UUVs.

The original fiber optic link used in the above study was designed to utilize:

0 1300 nm and 1550 nm wavelengths to provide simultaneous bidirectional

optical communication

* a dispersion shifted, single mode fiber

* fiber lengths of 5 Km to 20 Km

* commercially available parts

* a 16 MHz data rate

* modular and upgradeable components

Because of the low data rate, dispersion was not of concern and the design was

centered around the flux budget. The flux budget represents the total attenuation

experienced from transmitter to receiver. Using the maximum attenuation ratings for

all the components, a system loss of greater than 30 dBm was calculated [9, 10].

Figure 2.2 is the block diagram of this communication scheme and Table 2.1 lists all

of the components used with optical and mechanical parameters. The component

selection did not change dramatically for the new system built around remote

processing. Similar optical devices were used but were packaged in less than half the

space. Parameters and tradeoffs that drive this optical tether design are data rate,

cost, UUV capacity, distance, deployment cost, and repair frequency [3, 11, 121.
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TABLE 2.1

OPTICAL COMPONENTS

Component Manufacturer Part # Parameters

Tx/Rx Pair Laser Diode LDDL-2510 P.,= -6 dBm
1300 nm Rx Sensitivity -43 dBm

Data Rate = 20 Mbps

Manchester

Tx/Rx Pair Laser Diode LDDL-2515 P,,)= -9 dBm
1550 nm Rx Sensitivity = -43 dBm

Data Rate = 20 Mbps
Manchester

WDM JDS Fitel WD1315-X-A2 loss < .8drB
(1300 mux/ demux isolation > 45 dB
1550 demux) back reflection < -40 dB

WDM JDS Fitel WD1315-Y-A2 loss < .8 dB
(1550 mux/ demux isolation > 45 dB
1300 demux) back reflection < -40 dB

Fiber Coming SMF/DS Attenuation 0.21 dB/Km typical
CPC3 (with Diameter 800km
reinforcement) Weight 2.2 lbs/km air

Tensile Strength 100 lbs ultimate
30 lbs working
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2.2.1.1 Transmitter/Receiver (Tx/Rx) Pair

To accommodate the requirement for long data link, a distributed feedback

laser (DFB) was selected. Its small FWHM added a margin of safety against

dispersion problems that were not necessarily of concern because of the low data rates

used. Overall the Tx/Rx pairs were over specified to compensate for uncertainty in

attenuation fluctuations due to fiber payout. The DFB lasers chosen are readily

available commercial parts and were purchased as a pair for each wavelength used,

1300 nm and 1550 nm.

The Tx/Rx components provide a full function, high-speed fiber optic link.

Both operate at NRZ rates of up to 500 Mbytes/sec. Our application was 16

Mbytes/sec and the components were tuned for that frequency. Data I/O for each is

ECL 10K compatible. The Tx module incorporates circuitry for monitoring and

controlling the optical power and temperature. The optical receiver employs a

temperature compensated Ge-APD (Avalanche Photo Diode) which provides the high

sensitivity required. Additionally, the Rx incorporates automatic gain control (AGC)

which enables operation over a wide range of optical loss budgets.

2.2.1.2 Wavelength Division Multiplexers

To operate the bidirectional link simultaneously, a different light wavelength is

transmitted in each direction along the fiber. A wavelength division multiplexer

(WDM) injects, extracts, and isolates outgoing and incoming wavelengths over a
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single fiber. Additionally it isolates the light signals between the local transmitter and

receiver. Features of the WDMs include:

"* bidirectional transmission with greater than 80 dB directivity

"* wide spectral channels for use with Fabry Perot or DFB lasers without tight

wavelength selection or control

"* less than -40 dB back reflection.

2.2.1.3 Payout Fiber

In the past, remote underwater systems have had a communication bottleneck.

Acoustic communication transmitted through the water eliminates fiber problems, but

is severely limited by bandwidth and real time data availability. An expendable FO

link based on a small diameter cable offers the best trade-off for this application [61.

An optimally designed cable incorporates single mode fiber with minimal diameter

growth over wire. Fiber is relatively inexpensive, reliable, has high bandwidth and

can support bidirectional communication over great distances [13, 14]. Features of

the payout fiber used include:

"* inexpensive in production quantity

"* low attenuation: < 0.5 dB/km @ 1300 nmn and 1550 nm wavelengths

"* high tensile strength: 100 lbs ultimate; 30 lbs working

"* anti-abrasion jacket
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"* continuous length up to 20 km

"* small bend radius and excellent optical performance at 1550 nm because of

dispersion shifted properties

"• tolerance to temperature and pressure fluctuations

2.2.2 Underwater Vehicle Subsystem

Figure 2.3 shows the UUV system layout and configuration. The forward

section of the UUV generally consists of the system specific hardware of a particular

project, while the aft section of the UUV contains the mechanics that comprise the

UUV. The first section is the acoustic array with a small ballast section, followed

immediately by the electronics section.

Within the electronics sect~on are battery packs to power acoustic transmits,

acoustic array electronics, and the interface unit. In the upper forward compartment,

the interface unit resides, this is made up of a VME chassis containing six circuit

boards, three commercial, and three custom designs. One card contains all of the

optical components for communication. This is also the unit that is responsible for

the data handling and routing and is discussed in detail in chapter 3. In general, the

batteries provide energy for approximately thirty minutes of testing; however, in the

laboratory, bench power supplies can be substituted for continuous testing and

troubleshooting.

The propulsion batteries and the fiber optic (FO) cable section are located

behind the electronics section. The battery section is composed of a large bank of
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silver-cell batteries that are required for propulsion and maneuverability of the UUV.

The FO cable section houses a pressure vessel that holds the spool of FO cable. This

vessel is flooded while the UUV is submersed. This optical link design connects the

fixed end of the FO cable to a pressure penetrator leading to the optics on the dry

side of the UUV and allows the other end to freely payout from the pressure vessel

through the remaining sections of the UUV exiting from the top stabilizer fin at the

aft most section.

Next is the control section that contains the autopilot, motion sensors, and

electronics for UUV control. Two electrical links exist between the autopilot and the

interface unit and from the autopilot to the transmitter battery box. These links

provide system independence and are the only two electrical connections between the

UUV test bed and unique system electronics and are dedicated to test initiation and

safety. Finally, aft of the control section is the UUV afterbody which consists of the

motor and propulsion mechanics.

2.2.3 Launch Platform Subsystem

The remote subsystem residing on the platform has two configurations. The

configuration in use today encompasses the functionality of the original; however,

because the original configuration was used for such extensive data collection, it will

be discussed briefly. The original subsystem was used for remote control of the UUV

in the initial field tests. A block diagram of this entire system is shown in figure 2.4.
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The original subsystem on the launch craft contained two ruggedized units.

One unit contained the AVAX, which is the control computer, and two optical disk

recorders, one used for startup and recording of control data, and another used to

store raw data. The second unit, a VME chassis, contained an interface unit and

three additional raw data optical disk recorders. The launch platform interface unit

contained the optical transmitter and receiver complementary to those within the UUV

and is connected to the other end of the FO link. A monitor is also included for

viewing the vehicle parameters such as position and speed.

Figure 2.5, in a similar manner, portrays a remote processing system that was

tested in late 1992 and early 1993. The new remote processing setup replaces both

ruggedized chassis with one ruggedized VME chassis containing a gVAX on a VME

card, and a personal computer as an interface for human intervention. Although the

system is now configured to accommodate real time remote processing of data, simple

tests requiring only remote control of the UUV and no intervention can still be

performed. In either subsystem, remote control or remote processing, the UUV

configuration remains unchanged.

2.2.4 Interface Unit

The functionality of a tethered system lies within the interface unit (IU). The

IU, in its different configurations, controls the interfacing of several hardware

components within the system. These components are the acoustic array and the

autopilot in the UUV and the tactical computer and the optical drive located on the



22

w QI

caz

lz L

-J



23

launch craft. In addition to its interfacing responsibilities, the IU maintains the fiber

optic communication link between the launch platform and the UUV IU. The system

on the launch platform also contains two vector processing boards that handle the

signal processing tasks.

The following sections introduce the boards and the interface unit

configurations. For this thesis, the board of particular interest is the Fiber Optic

VME Interface (FO VME I/F). This board is responsible for bridging the VME

based systems on either side of the optical link. The design of the FO VME I/F will

be discussed in detail in chapter 3.

2.2.4.1 Interface Unit Board Definitions

Each board within the IU has a specific function and was designed or

purchased to meet those unique requirements. Table 2.2 lists the boards and some of

their technical highlights.
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TABLE 2.2

INTERFACE UNIT BOARD HIGHLIGHTS

Board Name Model #/Manufacturer Highlights

VME PME68-33/Radstone 25 MHz 68030 CPU
Controller/Main VSB Interface
Processor 40 MBytes/sec Data Transfers

Ethernet ENET- l/Radstone 25 MHz 68020 CPU
Ethernet 2.0 Interface
Thin Wire Interface

Fiber Optic Tx/Rx Custom Bidirectional Optical Interface
16 MBits/sec. Optical Data Rate
Sync Detection

Fiber Optic VME Custom Double Buffered Memories
Interface Supports 32-Bit Block Transfers

at 25 MBytes/sec.

SCSI- 1 SCSI- II/Radstone 25 MHz 68020 CPU
SCSI Interface at 5 MBytes/sec.
VSB Interface

Array Processor Supercard/CSPI 40 MHz i860 RISC Processor
66 MFLOPS

NTDS NTDS Type C/G.E.T. 8 MHz 68000 CPU
Full Duplex Interface Between
VME and Peripheral

Raw Data Interface Custom Double Buffered Memories
Supports 32-Bit Block Transfers
at 25 MBytes/sec.

tIVAX KAV-30AD/DEC 20 MHz rtVAX300 Processor
VME Interface
VAXELN runtime environment
2.7 VUPS (VAX Processing
Units Per Second)
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2.2.4.2 Configurations

There are three different configurations of the IU in the remote system. The

launch platform's WUs, configurations A & B and the UUV IU configuration C are

listed below in Table 2.3.

TABLE 2.3

VME CHASSIS CONFIGURATIONS

Remote Control Remote Processing UUV Subsystem
Subsystem - 1991 Subsystem - 1992,93

Main Processor Main Processor Main Processor

Ethernet Ethernet Ethernet

Fiber Optic Tx/Rx Fiber Optic Tx/Rx Fiber Optic Tx/Rx

Fiber Optic VME Fiber Optic VME Fiber Optic VME
Interface Interface Interface

SCSI-i 1 VAX Raw Data Interface

(2) Array Processors NTDS Type C

SCSI- II
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CHAPTER 3

DESIGN OF THE FIBER-OPTIC VME INTERFACE

The design of the Fiber-Optic VME interface (FO-VME I/F) splits one VME

backplane into two distinct backplanes. The two backplanes are often located many

kilometers apart, but can communicate through the FO-VME I/F and over the optical

link to share real time information. This integral board in the system's interface unit

is extremely crucial for the success of the fiber optic link. It allows the link to

operate at a high data rate while keeping the data accessible on an industry standard

VME backplane. Without the development of the FO-VME I/F board, interfacing to

powerful commercial electronics necessary on either side of the link could have

proved to be a more difficult task. A multitude of interfaces (ie. NTDS, Ethernet,

and SCSI) are required to have access to the interface units located at the opposite

ends of the link. The FO-VME I/F provides a common point for data transfers and

does not require customized interfacing among separate modules. Figure 3.1 is a

functional block diagram of the FO-VME I/F board and provides a reference to

functions discussed throughout the chapter.

3.1 Design Goals and Objectives

The objectives stated in chapter 1 are system oriented goals and are meant to

disclose where the FO-VME I/F fits into system success. When these objectives are
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translated into hardware design, they allow the designer to understand what steps are

needed to accomplish system requirements within one part of the system.

3.1.1 Physical Constraints

The interface unit resides in two locations, the UUV and the launch platform,

with the UUV being the more physically restricting of the two. Because of the UUV

size constraint and the need for conformance at the two locations, the UUV

restrictions drove the design on both sides. Even thought the launch craft presented

no space restrictions, it was designed with UUV requirements for several reasons: a)

hardware could be swapped between UUV and launch platform interface units with no

modifications, b) portions of the interface unit could be integrated into one unit before

adding the communication link and, c) only one custom hardware version was needed

to be built instead of specific versions for the UUV and launch platform.

The size constraint aboard the UUV posed another problem, lack of

redundancy. Data transmitted within the UUV and especially up the link, was

vulnerable to corruption. In addition, any complete failure of a component or board

could terminate a successful test. The lack of redundancy in the system was

compensated for in two different fashions. Designs were integrated into the FO-VME

I/F board that included an overriding control by the user. This meant that a fatal

error could be averted by resetting and reconfiguring the board. Also through the use

of status registers, anomalies could be identified and recorded. In the case of a fatal

error, an organized and safe system shutdown would occur.
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The second attempt to compensate for no redundancy was by extensive testing

for reliability. As will be shown in chapter 4, thorough testing of the boards and

eventually the system, were performed to significantly decrease the chance of a

system error during actual testing. This method of testing proved worthwhile by

exposing problems early in the design.

3.1.2 Data Reliability

When data is transferred over the VME backplane, it is assumed that transfers

will be made reliably. This is true for the VME backplane since it is a proven and

tested standard that has succeeded in the electronics community. For the design of

the FO-VME I/F board, this same data reliability was needed. Reliability should be

expected when good electronic design practices are followed. Again, through the use

of comprehensive tests, known data patterns can travel through the entire system, thus

verifying system and FO-VME I/F reliability.

3.1.3 Testability

For board level and system testing, the FO-VME I/F is required to have a

testable design. At the board level, this translates to well placed components and

signal traces that are accessible for instrumentation during troubleshooting. Also,

simple VME control was placed on the board that could put the board into different

modes depending on the tests performed. Finally, the use of status registers allowed

for monitoring during use and for the isolation of problem areas.
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3.1.4 Compatibility

Because the function of the card is to bridge the VME bus to a fiber optic

transmitter, both sides must be well defined. The board is designed to be compliant

with VMEbus specification ANSI/lEE STD1014-1987 IEC 821 and 297. This

specification is distributed by VITA, VMEbus International Trade Association.

Compatibility with this specification makes the FO-VME I/F compatible with all other

VME products using this specification.

The serial channel to the optics must also be compatible with the data rate,

format, and electrical levels needed for the transmitter and receiver circuit. The

design permits the use of newer optical components for future upgrades.

3.1.5 Data Availability and Integrity

The need for data in real time adds the need for data availability. The delay

that could be added to transmitted data had to be minimized. Design of the FO-VME

I/F board incorporates double buffering of transmitted and received data to permit

continuous and uninterrupted use of the optical link. When data is made available, it

is transmitted in a continuous bit stream with no data gaps. The double buffering

permits the interface controller to transmit or receive data on one buffer while the

opposite function is simultaneously occurring without the need of controller

assistance. The VME controller determines data priority for real time

communications with the interface unit on the other side of the link. This scheme

grants complete data availability to the user.
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Integrity also occurs because the VME controller is left out of the transmission

except when needed. Data is accessed from the FO-VME I/F at a rate 12.5 times

faster than the optical link. This means to sustain the link at maximum bandwidth,

the controller only dedicates 8% of its time for service of the FO-VME I/F board.

3.2 The VME Bus

In 1981, the VME bus was made available to the electronics community. Its

design was started years earlier and was meant to provide a solid 16/32 bit bus

standard that would be monitored by an independent organization [15]. The initial

players in the game were Motorola, Phillips/Signetics, and Mostek. Their efforts

created one of the most commonplace bus structures used today.

3.2.1 Mechanical Benefits

As stated earlier, the placement of electronics inside the UUV imposed a size

restriction on their design. The actual usable space varied as the system design

progressed, but the goai of a compact electronics package remained strict. Other bus

structures considered for their size and popularity were the STD Bus, IBM-PC Bus,

and Multibus. However, some of the mechanical attributes of these alternate busses

pose problems. The dimensions of both the IBM-PC Bus ana Multibus are too large.

The IBM-PC Bus, though smaller in area than the VME bus card, has a length that

makes it awkward to fit it into the allotted area. Another problem involves the use of

copper fingers for connection to the backplane as opposed to the pin and socket
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connection used by VME. The copper finger arrangement does not make as good of

a connection and degrades more quickly over time especially as the card is removed

and replaced.

An advantage offered by all of the bus structures is mechanical modularity.

Since each board is designed to a standard, it can be placed and used in any system

utilizing that standard. This modularity extends from standard board dimensions to

connector pinouts. Table 3.1 [15] shows a comparison of the bus structures

considered for this subsystem along with other popular choices.

3.2.2 Electronic Benefits

Besides its excellent mechanical attributes, VME is also an excellent electronic

choice. This long standing and well supported bus structure offers a high data speed

backplane. The backplane functions at a variety of data widths (8, 16, 24, and 32

bits) and address widths (16, 24, and 32 bits). When operating at the full data bus

width of 32 bits, a theoretical transfer speed of 40 MBytes/second is possible [16].

Most applications will fall short of this limit, but can still easily achieve speeds in

excess of 30 MBytes/sec. Table 3.2 [15] lists features of the VMEbus standard.

In order to achieve such data rates, the backplane must be electrically sound.

Years of refinement have developed a backplane that is both immune to modest

external noise levels as well physically designed to prevent excessive crosstalk

between traces when functioning at high speeds.
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Table 3.1 FEATURES OF SYSTEM BUSSES

Bus U

IBM-PC A N 8 20 ( N 335 X 106 C IBM
(6) 1 0*

Multibus A N 8.16 8,.16, y Y 305 X 171 Cal MEE
20,24 (8) edg 796

Mltibus H S y 08,16. 32 N Y 233 X = DI ntel
Eumend 41612

233 X 160, DN-

Nubus S Y 32 32 N Y 220 280 41 2  TI

Q.Bus A Y 8,16 16.18 Y 214X132, Cod DiEqul
2A (4) 257 or 393 edg CErp.

2

STD Bus A N 8 16 Y 114 X 165 Cod MEE
(2) 1ed 961

S-100 A N 8.16 16.24 Y 254 X 130 C
8) 1aW 696

y 214 X 132, Cd ~Digital
Unibus A 16 16.18 (8)y 2.57 or 393 edC oEp.

(8I57 9 Corp .

VERSAbus A N 8.16. 16,24, Y 368 X 235 C IEEE

32 32 ( alp 970

N 8.16. 16.24. y 16X 100 DIN. IEEE
VMEbus A yt 24. 32 32.(7) Y or233 41612 1014

1 64t I64t I(7) I Esuocawd

Notes: AU dimensions rounded and pIrmed in millimetrs for comparison.
Y - Yes. N = No. (t) Denotes proposed VMEbus enhancement.
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Table 3.2 VMEBUS FEATURES

Item Specification Notes

Architecture Master/slave
Asynchronous, N c

Transfer mechanism non-multiplexed, dock
opt. multiplexed (t)

16-bit (short 1/0)

Addressing range 24-bit (standard) AMdres rnge selected
32-bit (extended) dynamically
64-bit (long) (t)

Data pah width 8, 16, 24 or 32-bit Data path width selected
64-bit (t) dynamically

Unaligned data Yes Compatible with most
u-ansfers popular -i ,

Error detection Yes Using BERR* (optional)

Data transfer rate 0 -40 Mbyte/sec
0-80 Mbyte/sec (t)

Priority interrupt systemInterrupts 7 levels with STATUS/ID

Multiprocessing 1 -21 processors Flexible bus arbitration
capability

System diagnostic Yes Using SYSFAILO (optional)
capability

d Single height 160 X 100 mm eurocard
Mechanical stanrd SgDouble height 160 X 233 mm eurocard

DIN 603-2 connectos

International standards Yes IEC 821, IEEE 1101

IEEE 1014

(t) Denotes proposed VMEbus enhancement.
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Finally there is the issue of independence among VME modules in a common

backplane. The bus functions only when information is transferred among modules

and will not inhibit their independent functions. A VME module can process data or

interface to an external device at any speed without using the backplane. A functional

block diagram of the VMEbus architecture is shown in figure 3.2 [15].

3.3 Design

After it was determined where the FO-VME I/F board would fit in the system

layout, some design issues were resolved. A list of electronic requirements was made

to guide the design. These requirements had to provide:

0 slave compatibility with the VME interface specification

* 32 bit wide data block transfers over the backplane

* a serial transmit stream to optical transmitter in a Manchester encoded

format

* reception of a serial data stream from the optical receiver

* double buffering for transmitted and received data so that both could

function independently and simultaneously

* flexibility in board addressing and interrupt levels

* status registers that could be monitored to ensure proper board functioning

0 a writable register for dynamic board control
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3.3.1 VME Interface

The FO-VME I/F interface to the VME consists of the Cypress VIC068 chip

and its transceivers [17]. The VIC068 is a complete VME interface that adheres to

the VME specification revision C. 1. The VME interface is simplified with the use of

this chip, but because of the VIC068 complexity, there is a learning curve before its

use will pay off. The VIC068 is a programmable interface and must be initialized

upon power up for proper operation for its specific application. One of the most

difficult aspects of using the VIC068 is that it needs a 64 MHz clock to achieve its

full potential. Although a clock speed of this frequency can often cause crosstalk

problems, this high frequency was handled delicately during PCB layout and no

problems were identified.

The final design that centered around the VIC068 achieved data rates of 25

MBytes/second across the backplane when performing block transfers. This data rate

is more than adequate for servicing the optical link and does not provide a significant

burden on the main controller in the backplane. In other words, it allows the link to

operate continuously at 16 MBits/second while not requiring a large percentage of the

VME controller's time for maintenance

3.3.2 Data Formats

3.3.2.1 Link Data Format

The serial data transmitted on the link is encoded into a Manchester format. A

Manchester format for serial data involves the mixing of the data and the clock at the
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source so that both can be recovered at the receiver. Figure 3.3 displays how binary

data is encoded to form Manchester data. As shown in the figure, the Manchester

data contains a transition in the middle of every data cell that is extracted to form a

clock when the data in decoded. Also, consecutive l's or O's show up as a clock thus

providing constant transitions and an indication that the link is active. One benefit of

this form of encoding is that the clock can be recovered and used for the clocking of

the data through the rest of the design. Because the link is a connection between two

independent subsystems, it can not be guaranteed that they are using precisely the

same clocking frequency or that the clocks are in phase. Once received data is

recovered and stored, it can be reclocked out at the local subsystem's clock rate.

Another benefit for Manchester encoding is the transmitted data is

continuously transitioning. Each data cell contains a data transition which makes it

simple to determine whether or not the link is active by the appearance of data

transitions even when communications are idle.

A disadvantage to Manchester encoding is that the entire link bandwidth is

needed for this transmission. As figure 3.3. shows, the actual data needed to be

transmitted is half the frequency of the Manchester encoded data. In other schemes

such as NRZ (non return to zero), the data does not contain clock data and thus runs

at half the bandwidth. NRZ encoding can double the available bandwidth of the serial

link. However, NRZ is difficult to synchronize because of its non-periodic

transitions.
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The actual serial data format is shown in figure 3.4. Each packet takes 16.384

ms for transmission, where 4 us are required for link synchronization. Serial packets

can occur non-stop and can utilize 100% of the link bandwidth. Data packets can

also be transmitted at a much slower pace from transmit buffer to receive buffer, but

the link always operates at 16 MHz.

3.3.2.2 Buffer Packet Format

Each individual transmit and receive buffer on the FO-VME I/F board is 32

kbytes in size, organized 8k x 32 bits. Selection was made on the 32 bit data width

for ease in interfacing to the VME data path without the need for additional

demultiplexing. Also, the size of the memory integrated circuit, an 88 pin slim DIP

package, occupies very little board space. The buffer size is known as the principal

data packet and contains the formatted data for every transmission on the link. Figure

3.5 shows the breakdown of the contents of a principal data block. Its division

allocates specific portions for raw acoustic data and control data (primarily ethernet

data). Also a preamble is used that contains a user defined 64 bit sync word that,

when decoded, indicates the start of a principal block.

Although the same format is used for either direction on the link, not all the

allotted areas will always be used. For example, there is no raw acoustic data that is

passed from the launch platform to the UUV; that portion of the principal block can

be ignored even though it is still transmitted. It is also not required to be read by the

controller when received in the receive buffer.
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3.3.3 FO-VME T/F Memory Map

All modules present in a VME backplane are configured to occupy a specific

address range. In a VME system, there are multiple address ranges, each

representing the number of address bits and data bits being used [16]. For example,

A32/D32 in a VME system means that a board will respond with 32 bit data to data

requests that require 32 address bits. Figure 3.6 is a memory map of the FO-VME

I/F board. It shows the selectable A16/D8 and A32/D32 address space on this board

and what is contained in these ranges if they are accessed. It is important that the

address ranges are selectable because different VME controllers cannot always access

any VME location at a given VME address and data width. For example, a controller

may only perform A32/D32 transfers in the lower half of VME space, therefore a

board would need to be set for an acceptable address in that range.

3.3.4 Optical Tx/Rx Interface

One function of the FO-VME I/F board is to interface with the optical

transmitter and receiver. As stated earlier, the serial data interface is Manchester

encoded before transmission on the fiber, and it is the function of the FO-VME I/F to

provide the encoding and decoding.

The task is accomplished easily since a high clock frequency of 64 MHz

resides on the board. The encoding is simply the 'exclusive NOR' of a 16 MHz

clock and the data, re-clocked at 32 MHz for stability. Decoding is simpler yet with

the use of a commercial Manchester decoder.
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Data on the FO-VME I/F is handled as 32 bit words and translated to serial

for interfacing with the optics. Figure 3.7 steps through the serial data to buffer

storage routine. Manchester encoded data is decoded and translated to 16 bit words.

In this form it is stored in 32 bit wide location. in memory. When a new sync is

decoded, the present buffer is no longer written and is marked as full.

3.3.5 Dual Double Buffer Memories

Each buffer on the FO-VME I/F board is a 8k x 32 bit RAM. Separate I/O is

provided for independent input and output connections. The same address lines are

used for both the read write functions, thus simultaneous reads and write are not

possible. The board has two banks of memory, transmit and receive and each is

operated independently from the other; data can be received by the board while the

VME controller is transmitting data. Each bank is comprised of two memories and

they are in the same location in VME adc:ess space. When the controller completes

the writing of a transmit buffer, it can continue to write the next block in the same

address space. It appears to the controller as if it is writing over the previous data,

but in fact it is writing the next transmit buffer while the first one is being transferred

to the optics for transmission over the fiber. Overall, the toggling of memories is

transparent to the user. A similar scenario happens on the receive side where the

VME controller can be reading received data while the second receive buffer is

reading data from the optical receiver. This function of toggling memories makes the

card simple to use and easy to integrate into a system program.
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Figures 3.8a & b represent the logical flow of the double buffered memories.

This particular flowchart follows the transmission of data from the VME backplane to

the optical transmitter. The logic is identical for received data coming from the

optical receiver and being read across the VME backplane. At the start of a transmit,

the status register reveals that TxA is empty and can be written. Initially no data is in

either Rx buffer so no data can be read to the optical transmitter. The VME

controller begins writing to TxA until it is full. Then a status read will reveal a

readable buffer that will immediately be transmitted without further intervention by

the VME controller. It will also show that TxB can be written for the next

transmission while TxA is currently being transmitted. At this point in the flowchart,

the reading and writing of buffers becomes independent. If there is an empty buffer,

it can be written with data to be transmitted; likewise any full buffer will be

immediately transmitted. If at any time both transmit buffers are full, they will be

transmitted one after another with no time delay between buffers and no data can be

written from the VME controller to a Tx buffer until at least one Tx buffer is empty.

This controller independent toggling of buffers allows for maximum link

bandwidth utilization while requiring minimal VME controller service. The data flow

for received data can use this same flowchart with the exception that data is being

written from the optical receiver and read by the VME controller. The transmit and

receive buffers are also independent of each other allowing for simultaneous operation

of each buffer pair.
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3.3.6 Time Delay of Fiber Optic Interface

For transparent link operation, the system user should not be able to discern

the delay added to the data packets due to traversing the link. Ideally, in a non-link

supported system, data would be transferred directly among modules and not travel

any unnecessary paths. For this system; however, the data needs to be formed into

packets, transmitted to the opposite end of the link, and the disassembled before

reaching its destination.

For some paths, the extra delay is of no consequence. For example, data that

is transmitted up the link for recording will not be affected by additional delay; the

only concern is to handle the data in real time so that it is recorded as fast as it is

created. Some data paths; however, depend heavily on available data. The most

restricting requirement comes from raw acoustic data that is processed to form new

UUV commands. In this scenario, raw acoustic data from the UUV needs to be

processed in powerful array processors located on the launch platform. Decisions

from this processing are formulated and then transmitted back down the link for

control of the UUV. The hardware allows for real time transmission of all the data,

but adds a handling delay that can be determined.

This delay is easily calculated as a sum of the hardware delays of the FO-

VME I/F and fiber.

Total Delay = tWRrFE BUFIER + txMrr tBUFFER + tFIBER DELAY + tREAD BUFFER (3.1)
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where:

tWRrrE aUFFER = time required by the VME controller to write to a transmit

buffer

tx,.T BI•Fz = time required to read a transmit buffer serially to the link

tFIR DELAY = optical delay added by fiber

tREAD BUFR = time required by the VME controller to read a receive buffer

Using the following characteristics of the FO-VME I/F and fiber:

VME read and write speed = 25 MBytes/second

Buffer size = 32 kBytes

Link Speed = 16 MBits/second

Fiber Length = 20 km

Refractive Index (n) = 1.476

The solution to equation 3.1 is the following.

19.09 ms = 1.31 ms + 16.384 ms + 98.3 us + 1.31 ms

The time delays created from the buffer operations are easily calculated by

dividing buffer size by speed to obtain time. Finally, the delay added by the fiber is

approximately equal to the length of the fiber (1) divided by the speed of light (c)
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multiplied by the refractive index (n) as shown in equation 3.2. This result is

expressed in seconds.

t DELAY = (1 * n)/c (secs) (3.2)

This total delay of 19.09 ms is for a one way transmission across the link.

For the example stated above for UUV control, the total delay would be a minimum

of 38.18 ms from the time raw acoustic data resides in the UUV VME controller to

the time a decision based on this data resides in the same VME controller in the

UUV. For this application, this calculated delay was negligible.

3.3.7 Status and Control

The FO-VME I/F board contains three registers: two status and one control.

Their function is to provide the VME controller with information about the board

during use. The status registers contain information on memories such as full or

empty, and which of the dual buffers is ready or in progress for reading and writing.

Information of this kind can be used by the VME controller to determine if a transmit

can occur, and in the case of an error, determine which memory is failing and reset

its conditions in an attempt to continue its use.

In addition to the status registers designed and added to the board, the VIC068

contains over fifty registers that are shared between the FO-VME I/F board and the

VME controller. These additional registers contain VME related information and are
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used for configuration of the board so it can be used in a specific VME system. The

sharing of these registers allows the circuitry on the FO-VME I/F board to exchange

information related to VME activity without the need for additional custom designed

hardware on the FO-VME I/F board.

Finally, there is one write-only control register unique to FO-VME I/F board.

This register permits the VME controller to have limited control over some of the

board's functions. For example, the control register can put the board into a reset

mode that clears and resets the dual buffers or it can prohibit data from leaving or

entering the board. The addition of this control register aids in a board recovery in

the event of a critical error.

3.3.8 Operation Modes of the FO-VME I/F

Independent of VME activity, the FO-VME I/F board has three modes internal

to its design that are always functioning. These three modes are a) status and control

update, b) interrupt generation, and c) VME accesses. The interdependence of the

mode operations is displayed in a flowchart in figure 3.9.

The first mode updates the status and control registers unique to the FO-VME

I/F board. The VIC chip provides a programmable local timer that can function as a

tick timer to initiate local activity. On this board the timer is set at 1000 Hz and is

used to interrupt the board so that the status and control registers can be updated. As

shown in figure 3.9, this mode has the highest board priority. While the board cycles
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through its modes, it checks for the arrival of a 1000 Hz tick first before checking the

need for a different mode. The reason for this priority is twofold. First the time

required for a status update is small in comparison to a VME access so timely status

is always available. Second, because access to the registers will override the other

two modes, it is possible for the VME controller to access a board that is failing and

possibly reset the board before a critical failure occurs. Any other priority could

hinder timely status updates and potentially put the board into a "lock up" state

without a software capability to determine status.

The second mode pertains to generating interrupts on the VME backplane.

Whenever a Rx buffer is filled with new received data from the link, the FO-VME

I/F must let the VME controller know so that the data can be removed before the

buffer is needed again by the link. By generating an interrupt that is broadcast to the

controller, the board is requesting service. It is then the responsibility of the VME

controller to read all of the relevant data from the buffer and then free up space for

the next alternate receive packet. If data is not removed and both buffers are filled,

new data received from the link will be lost.

The last mode provides slave accesses for reading and writing Rx and Tx

buffers. Although this last mode has the lowest priority on the board, it plays the

most significant role. When the VME controller wants to acces- JtI FO-VME I/F

board, it issues a local bus request that is decoded by the board to be accessed. The

board will enter the slave access mode and then check to see if there is a buffer that

can be read or written; if not, it will not grant access. If access is granted, the local
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bus on the FO-VME I/F is opened to the VME bus and data transfers can occur. The

largest transfer that can occur is 256 transfers of 32 bit words (1 kByte). After a

transfer of any size, the access is lost and must be reinstated between the controller

and the FO-VME I/F.
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CHAPTER 4

TESTING

Thorough testing, both in the laboratory and in the field, was undertaken to

prove the feasibility of a UUV with remote command and control provided over a

fiber optic link. The tests were performed in stages that steadily increased in

complexity, culminating in actual complete system tests performed in an underwater

environment. Although it is not an objective of this thesis to determine a bit error

rate (BER) for the optical and electronic subsystems, enough data was gathered to

confirm the effectiveness of this technology for undersea use.

To aid in all facets of testing, electronic and optical test equipment was used.

For this research a optical power meter and optical time domain reflectometer

(OTDR) were obtained. The test equipment was extremely valuable for laboratory

and ultimately field testing. Their presence is very helpful for optical link

development.

4.1 Laboratory Test

Before going to the field for final testing and analysis, a series of tests were

performed in the laboratory to ensure reliable and safe operation of the UUV

electronics. Specifically, three tests - loopback, ramp data, and puretone - scrutinized

the system and allowed for an almost flawless system performance in the field.
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4.1.1 Loopback Test

Testing of only the hardware that contained the fiber optic link (FO) related

components was done to ensure the integrity of the transmission path from the VME

bus to the VME bus on the opposite side. The first was the loopback test. As seen

in Figure 4.1, the test set was made up of two VME chassis, each only containing a

VME controller/processor (PME-63) and the FO boards, the FO-VME I/F and the the

optics. Connecting the two VME chassis, via the FO boards, was a 20 km spool of

fiber. The Sun workstation acted as the monitor to initialize testing and to view

results.

The test was written in Ada and loaded into PROMs located on the two PME-

63s. One PME-63 was the master, the other the slave. Initiation of the test sent

32 kbyte (the size of a FO-VME buffer) packets of known 32-bit long data words up

the link from the master. The slave read the packet from the FO-VME I/F,

incremented values by one, and then returned the packet. When received back, the

master checked the values for the correct increment, incremented them by one, and

sent the new packet back up the link. The test was varied by changing the number of

packets to be sent (up to 232) and the speed (up to 100% link utilization) at which they

were sent.

The objective of this initial test was to debug the custom built hardware. The

loopback test was very effective in revealing errors in timing and logic. It was used

to eventually debug four sets of custom designed hardware. After correction of the

identified problems, the test was re-run for about 24 hours and resulted in few or no
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data errors. Because of the comparison done in the test, one error meant one long

word was corrupt. The actual error could encompass from one to thirty-two bits.

The nature of the loopback test did not warrant precise error handling or recording.

As expected, the outcome only proved the fiber optic electronics and the optical link

was sound for fast, simultaneous bidirectional data transfers.

4.1.2 Ramp Data Test

The custom FO boards were integrated into the system and the system was

ready for the next level of test. A test fixture was constructed that functioned

according to the specification of the actual acoustic array. Instead of providing

acoustic type random data, it produced incremental data in the form of a ramp

function. Its output data was continuous 16 bit parallel words, where each pair of

data represented the real and imaginary components of actual data. Each data point

was incremented by one over the previous data point. Figure 4.2 graphically displays

the ramp data input. This test fixture allowed for a more thorough and realistic test.

Figure 4.3 shows the setup for the ramp data test.

At this point the setup now contained portions of code to be included in the

final system. Ramp data was injected into the system in place of acoustic data, and

transmitted up its link via the PME-63 and FO-VME I/F board. Received data on the

other side of the link was recorded onto optical disks via the PME-63 and SCSI

boards. All test code is contained in the PME-63 and is bootable and commences on

power up.
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Although in the test the FO link was running at full bandwidth, 16 Mbits/sec,

only the acoustic data was checked for accuracy; this makes up 6.25 percent of the

transmitted data. During the test; however, the controller was still sending and

receiving full 32 kbyte packets of data. The data was extracted by reading the data

and control disks. This combination of data and control information allowed for the

formatted data to be located and recovered. The data was checked for incremental

data one 16 bit longword at a time. Discrepancies were printed to the screen. Figure

4.4 shows a sample screen with correct data, and an induced error.

Table 4.1 shows the results of five ramp data tests, representing more than 250

MBytes of acoustic data. Assuming the BER of the optical link is equal to 10 -9, at

most two bit errors should have occurred in this data sampling. As Table 4.1

portrays, no bit errors occurred, and this is a total system check, not just a test of the

FO-VME I/F electronics and the optical link. Besides the optical link, the BER of

the electronics transferring data on each side of the link in addition to the error rate of

the optical recording medium used. In conclusion the system and the optical link

performed satisfactorily and better than expected. The purpose of this test was not to

derive the BER of the system, but rather to do a predictable whole system check that

would reveal errors too large in magnitude to be accepted. Later field tests revealed

no noticeable errors.
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Processing Ping 4.000000
Processed 100.000000 samples
Processed 200.000000 samples
Processed 300.000000 samples
Processed 400.000000 samples
Processed 500.000000 samples
An Error Occured at time 500.000000 samples

Imag Beam 3 28091.000000 28090.000000
Processed 600.000000 samples
Processed 700.000000 samples
Processed 800.000000 samples
Processed 900.000000 samples
Processed 1000.000000 samples
Processed 1100.000000 samples
Processed 1200.000000 samples
Processed 1300.000000 samples
Processed 1400.000000 samples
Processed 1500.000000 samples
Processed 1600.000000 samples
Processed 1700.000000 samples
Processed 1800.000000 samples
Processed 1900.000000 samples
Processed 2000.000000 samples
Processed 2100.000000 samples
Processed 2200.000000 samples
Processed 2300.000000 samples
Processed 2400.000000 samples
Processed 2500.000000 samples
Processed 2600.000000 samples
Processed 2700.000000 samples
Processed 2800.000000 samples
Processed 2900.000000 samples
Processed 3000.000000 samples
Processed 3100.000000 samples
Processed 3200.000000 samples
Processed 3300.000000 samples
Processed 3400.000000 samples
Processed 3500.000000 samples
Processed 3600.000000 samples
Processed 3700.000000 samples
Processed 3800.000000 samples
Processed 3900.000000 samples
Processed 4000.000000 samples
Processed 4100.000000 samples
Processed 4200.000000 samples
Processed 4300.000000 samples
Processed 4400.000000 samples
Processed 4500.000000 samples
Processed 4600.000000 samples

Figure 4.4 RAMP DATA TEST SAMPLE SCREEN PRINTOUT
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Table 4.1

Ramp Data Test Results

Test # Quantity of Data Bit Errors

Recorded

1 55 Mbytes 0

2 54 Mbytes 0

3 55 Mbytes 0

4 55 Mbytes 0

5 54 Mbytes 0

Total 273 Mbytes 0

Fiber - Length = 19.8 km

Rx Input Power 1300 nm = -27.4 dBm (launch platform)
1550 nm = -25.5 dBm (UUV)

BER - Expected = 1.000 x 10-'

4.1.3 Pure Tone Test

The laboratory testing satisfied only preliminary testing requirements, so a test

was needed to test the entire system out of water. To accomplish this, an artificial

stimuli was needed to form an input to the acoustic array. The objective of the test

was to verify that the system was operating correctly and accurately from sensors to

recording. Again, in figure 4.3 the test sL shown. The setup is identical to the

ramp data test setup, except for the removal of the test fixture and the addition of the
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actual acoustic data interface. The stimuli to the sonar had to be predictable so

analysis would be possible.

The puretone test consisted of a single frequency puretone injected into the

sonar via a pressure transducer. Although the system would manipulate the received

data by downconverting and filtering, the transfer function of the sonar was known

and hence the recorded data could be calculated. The input puretone passed through

many components, active and passive, so the test could not determine a BER.

Rather, it was used to test the reliability of the electronics system and FO link. It

was also easy to perform. The setup for the test differed very slightly from the final

configuration, and a large subset of the data could be checked in about one hour.

Sections 4.1.3.1 and 4.1.3.2 describe two unique analyses performed on the

tonal data to support system functionality and reliability. The analysis shifts from

locating bit errors to locating holes in the data that could give invalid acoustic signal

representatic, , the complete system, random bit errors would most likely go

unnoticed because of data manipulation such as averaging and smoothing algorithms.

4.1.3.1 Complex Data Visualization

Visualization of the puretone data made data analysis fast, accurate, and

simple. Data from the sonar was in the form of two 16 bit words, one real and one

imaginary. This complex data can be written as e (J"+* or, converted to the

trigotiometric form, it is stated as cos(w + ,) + j sin(w + ,), where W, is the input

operating frequency and 4, is the initial phase offset. The trigometric equation is in
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the form representing the radius of a circle, thus allowing a time sampling of the

continuous complex data to assume a circular shape. Each plotted point will

determine a point on the perimeter of a circle and the connected points will display a

circle with a defined perimeter thickness. The thickness is derived from the sampling

and input frequencies. Figure 4.5 displays an actual plot of puretone data with no

missing data. The sampling frequency also defines the perimeter distance between

two consecutive points and this is where the complex data visualization is important.

As viewed in figure 4.6, a plotted point was intentionally omitted to portray the

method. Because of the missing sample, the connecting line between two points is

longer than expected and the circle shows a noticeable flaw that is the result of a

missing data from the electronics subsystem.

This visual analysis is also preferred over FFTs for viewing the spectrum,

because the system noise in a typical spectrum does not have a traceable source.

Portions of the system noise were due to sonar filtering, but it is difficult to determine

if any was due to the FO link. Each complex plot represented about 600 kbytes of

data and about 10 such plots would exhaustively test all the recorded raw data from a

short laboratory test.

The amount of missing data complex visualization could detect is one sample

or four bytes; in addition, a corrupt MSB but would also be distinguishable. The

puretone test was run several times before each field run, and never revealed a fault

with the FO electronics.
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4.1.3.2 Spectral Analysis

Much in the same manner field data was analyzed, laboratory test data could

be analyzed by performing an FFT on the data and graphically displaying the results.

The FFT has the following advantages over the complex visualization method: it

checks system performance and verifies the frequency components of the test; and, by

checking the frequency components, verifies that periodic data is not missing. It is

possible that the complex visualization method would overlook missing periodic data

because the remaining data could still produce a good circular plot.

Figures 4.7 and 4.8 show a sample input tone and a frequency plot of the

recovered data after traversing the FO link. It is evident from the spectrum content

that the signal stays intact. Also, the recovered time series displayed in figure 4.9

shows a reconstructed puretone. The jagged reconstruction is due to sampling.

4.2 Field Test

From the Fall of 1991 to early 1993, twelve in-water experimental tests were

attempted that tested the reliability of the FO subsystem. Overall there was great

system success, and system performance related to the remote control and operation

of the UUV was outstanding. Table 4.2 lists the in-water tests attempted and their

outcome. A tabulation of this run data shows:

2 -Fiber Breaks
10 -Run-as Planned

12 -Total
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TABLE 4.2

IN-WATER RUN TEST RESULTS

TEST COMMENTS
DURATION

1 2 min Fiber break

2 Fiber Integrity Test at Launch
Run-as Planned

3 Fiber Integrity Test at Launch
Run-as-Planned

4 Fiber Integrity Test at Launch
Run-as-Planned

5 10.5 min Run-as-Planned

6 10.5 min Run-as-Planned

7 51 sec Fiber Break at launch

8 10.5 min Run-as-Planned

9 10.5 min Run-as-Planned

10 10.5 min Run-as-Planned

11 12 min Run-as-Planned

12 10 min Run-as-Planned
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The two fiber breaks will be discussed in Chapter 6. The 10 successful data

runs netted about 350 MBytes of data. The data was broken down and divided into

acoustic cycles. Each acoustic cycle contained acoustic blocks that were inspected for

frequency content. The data for each acoustic block was FFT'd and inspected

graphically. The level of FO subsystem electronics data integrity that could be

determined from the test is limited. The smallest increment of missing data to be

easily detected would be one sample (4 bytes). Missing one sample would create a

true discontinuity and cause a phase shift that would be revealed in the FFT. For all

ten valid runs, there were no obvious missing samples revealed in the data analysis.

A certain BER is inherent to its system (- 10"- by optical component specifications)

but its effects were not noticed in the different processes performed on the data.

Because of the complexity of the retrieved data, it is not possible for an FFT

alone to verify the results; thus verification came in two forms. First, during any

particular test, known signal sources were present in the water and their position

relative to the UUV was monitored and recorded. The acoustic information gathered

from these sources was verified to be contained in the data recorded through the link

electronics.

A second verification of data retrieved through the FO link electronics

occurred one year after the first field tests. Similar in-water runs were performed

that did not use the fiber optic link and recorded data on optical drives internal to the

UUV system. Because of the similarity of acoustic data collected, it was possible to

perform comparisons to the FO link retrieved data. Cumparisons concluded that the
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data from 1991 were valid and was a true representation of the acoustic information

present in the water. Discussion of this graphical analysis and comparison is complex

and tedious, and is outside the scope of this thesis.
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CHAPTER 5

FUTURE EXTENSIONS

5.1 The Future in Tethered Vehicles

UUVs with fiber optic payout capabilities have become increasingly popular in

recent years. Companies like Optelecom, Northern Telecom, Sippican, and SAIC

Maripro all offer variations or services based on this technology. Applications for

this technology include: a) rapid deployment of communication links, b) tethered

sonobouys, c) deployment of expendable oceanographic data acquisition equipment for

measuring salinity, current, pressure, and depth, d) ordnance disposal, e) harborside

security and, f) deep water search and salvage [I].

Our original fiber optic tethered vehicle was specifically designed and built for

one project. All of its requirements were derived from goals set by this project, and

from space occupied by the electronics and optics chosen. A fiber optic tethered

UUV system would need to be more dynamic and adaptable to new applications.

This may be accomplished by designing in more general purpose interfaces that could

easily fit most users' applications.

The fiber optic spool could be houscW- in a permanent compartment within the

vehicle. A new UUV layout would not be necessary if a project were to utilize the

spool. In addition, an electronic interface will make the optics transparent to the

user. The electronic interface would consist of a wide parallel word with a simple
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asynchronous strobe or handshake. The bandwidth of the new link would be suffi-

cient to meet any current or near future needs. The user only needs to strobe data, at

virtually any rate, into the interface and the data will be available intact on the other

end of the link. Each project has the requirement to multiplex and demultiplex its

own data and interface with the link electronics. Again, all of the optics will be

transparent to the user and will not affect UUV configurations. The following

sections describe the new technology that will support this.

5.2 Opto-Electronics

Chip sets now exist to assist in GBit/second transmission. HP, Vitesse,

AMCC and TriQuint offer such chip sets as standard product. With their availability,

other manufacturers have developed standard links that use these chip sets. The

standard products are aimed at the Fiber channel and HIPPI interface market, but

their operation is generic enough for any use. Two such manufacturers are Finisar

and Broadband Communication Products (BCP). The basis of the boards Finisar and

BCP have developed is to remove the work of developing a fiber based system by

hiding the optics. Two boards could be connected with a commercial fiber and then

the user would have to strobe data into a wide bit word interface.

An immediate advantage, besides the lack of optical knowledge needed, is the

user would work with a strobe rate that is 20-40 times slower than the serial link rate.

This is a much simpler system rate to work with. As before, the development boards

will offer full duplex operations using a single fiber.
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5.3 VME Enhancements

In late 1992, another revision was completed towards the finalizing of a VME

64 specification. The most noticeable transitions to the new specification is the use of

64 address lines and 64 data lines. Theoretical VME transfers can now be as high as

80 MBytes/second and the address space increases to 16 exabytes (2' bytes). Even at

backplane speeds of this magnitude, a data link at a maximum of only 640 MBits/sec

could be supported. A link of this bandwidth does not presently appear to have a

function for a UUV. The data rate of 16 MBytes/second as discussed in this thesis

would be sufficient for the tasks of this UUV system.

5.4 Summary

It is difficult to accurately predict all possible future configurations of UUVs.

The parameters that define these systems are even more of an unknown. However,

any proposed generic UUV FO link must cover the extremes of distance, speed, data

bandwidth, and UUV size.
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CHAPTER 6

CONCLUSION

6.1 System and Component Problems

6.1.1 Payout Fiber

Two of the twelve in-water runs involved a failure due to the fiber's breaking.

The first of these breaks occured because of improperly installed hardware. The

cable broke at launch due to kinking in the hose that is meant to uncoil and protect

the fiber at launch. This error did not point to the fiber as a source of blame, rather

to the deployment setup. The deployment setup, however, is still part of task the

required to use fiber as a transmission medium.

The other failure occurred at 51 seconds after launch (scheduled run time was

20 minutes). At this time, the remote vehicle sensed the loss of data from the launch

craft, and shut down the system electronics. Because of the methods used in deploy-

ment, it is difficult to determine where the break occurred. After recovery of the

UUV, there were significant lengths of cable still hanging from the UUV, indicating

that the break was not in the vicinity of the UUV.

6.1.2 System Failures Summary

The two errors identified during field tests were repaired by trying to avoid the

circumstances that led to them. This meant new procedures to identify potential
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problems before they occurred. The system did perform exceptionally well with a

success rate of 83% for the fiber optic subsystem electronics.

The use of pre-run test in the laboratory helped tremendously in avoiding

additional errors. The complexity of the entire UUV and remote control system

makes the possibility of a failure imminent; however, laboratory tests remove the

oversights that can occur when the operator becomes too familiar with the system and

this familiarity creates a false sense of security for in-water testing.

6.2 Thesis Summary

The results presenLwd in this thesis culminated from a three year R & D project

for which a major objective was to utilize a fiber optic data communication link to

provide a remote command and control platform. System operation during in-water

testing combined with laboratory testing demonstrated the tethered UUV met all of its

technical requirements cited in section 1.4.

Presently, most payout applications use optical fibers and cables manufactured

for other applications. With a wide growth of this application area, we can expect to

see more fiber and cable developed that will be optimized for these areas. These

include stronger fibers with a thinner buffer for high speed payout and cables

ruggedized for the harsh undersea environment. The other components used for the

success of this research are generally commercial off-the-shelf parts without specific

tolerances for undersea use. This is easily acceptable since their working environ-

ment is dry and reasonably controlled.
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The operation of the optical, payout, and remote command and control systems

was excellent. As expected, all of the processing equipment, recorders, and commer-

cial and custom boards performed exceptionally well and as expected. The fiber optic

tether operated reliably at all speeds and maneuvers.
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